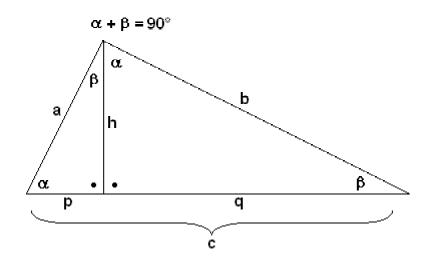
An Evidence of Pythagoras' Theorem

Rectangular Triangle



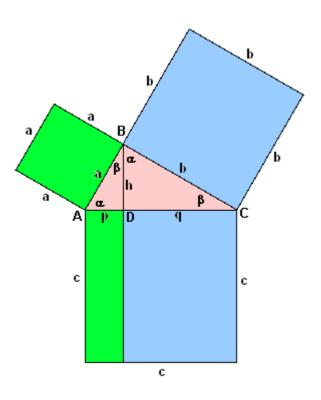
- 1. The angle-sum in any triangle is 180°, therefor in a rectangular triangle there is $\beta = 90 \alpha$
- 2. By triangles, which differ in size, but have equal angles, the lenght of sides behave proportional to each other. By drawing-in the hight-line one obtains 2 of such triangles (a-h-p und b-q-h).
- 3. If one draws in any rectangle a diagonal, it is divided by this into 2 equal, rectangular triangles. So every of these triangles has exactly the half area of the rectangle. So one can determine the area of the rectangular triangle, by drawing a rectangle over it.

$$\frac{p}{h} = \frac{h}{q} \implies h^2 = p \cdot q$$

So one can determine the hight of the triangle, but p and q too, without knowing the angles:

A... Area of the Triangle $2 \cdot A = a \cdot b = h \cdot c \qquad \Rightarrow \qquad h = \frac{a \cdot b}{c}$ $\frac{p}{a} = \frac{h}{b} \qquad \Rightarrow p = h\frac{a}{b} = \frac{a^{2}}{c} \qquad \qquad \frac{q}{b} = \frac{h}{a} \qquad \Rightarrow q = h\frac{b}{a} = \frac{b^{2}}{c}$ $c = p + q = \frac{a^{2}}{c} + \frac{b^{2}}{c} = \frac{a^{2} + b^{2}}{c} \qquad \Rightarrow$ $c^{2} = a^{2} + b^{2}$

Pythagoras' Theorem Evidence by comparison of the areas a^2 und $p \cdot c$



In the both triangles of the same angle α between a und p it is :

In the triangle ABD: $p = a \cdot \cos \alpha$

In the triangle ABC: $a = c \cdot \cos \alpha$

 $k = \cos \alpha$ one take k instead of the Cosine α as shorteningfactor :

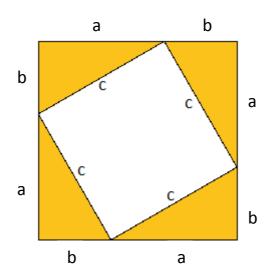
$$\mathbf{p} \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{k} \cdot \frac{\mathbf{a}}{\mathbf{k}} = \mathbf{a}^2$$

after this the green rectangle has the same area as the green square

by the blue it is the same, if one replaces α by β , a by b und p by q. By the so called "projection" of a on p the shortening is by the same factor as by the projection of c on a, because the angle is the same. That means: What has been arisen by the projection of the side of the square by the green rectangle: What the length of the side of p versus a is shortened, the length of the side of c is prolonged by the same factor versus a. Thus is the area of the rectangle equal to the area of the square.

Erich Foltyn Vienna June 2008

The best evidence of Pythagoras' Theorem



```
A .... Area
```

 $A_{triangle} = \frac{ab}{2}$ $A_{bigsquare} = c^{2} + 4.A_{triangle}$ $A_{bigsquare} = c^{2} + 2.ab = (a+b)^{2} = a^{2} + 2ab + b^{2}$ from it follows : $c^{2} = a^{2} + b^{2}$

Erich Foltyn Vienna, Austria July 17th 2011